Using the allin1 container.
Here’s an example with only Pandas
atwong@Alberts-MBP-3 sandbox % cat script.py
# import necessary packages
import pandas as pd
from sqlalchemy import create_engine
# establish connection with the database
engine = create_engine(
"mysql+mysqlconnector://root:@localhost:9030/demo")
# read table data using sql query
sql_df = pd.read_sql(
"SELECT * FROM sr_member",
con=engine
)
print(sql_df.head())
atwong@Alberts-MBP-3 sandbox % python3 script.py
sr_id name city_code reg_date verified
0 1 tom 100000 2022-03-13 1
1 2 johndoe 210000 2022-03-14 0
2 3 maruko 200000 2022-03-14 1
3 5 pavlov 210000 2022-03-16 0
4 4 ronaldo 100000 2022-03-15 0
Here’s another example with Numpy.
import mysql.connector
import numpy as np
import pandas as pd
mydb = mysql.connector.connect(
host="localhost",
port=9030,
user="root",
password="",
database="demo"
)
mycursor = mydb.cursor()
mycursor.execute("SELECT * FROM sr_member")
myresult = mycursor.fetchall()
data = np.array(myresult)
sql_df = pd.DataFrame(data)
print(sql_df.head())
print(sql_df)
Results
atwong@Alberts-MBP-3 sandbox % python script.py
0 1 2 3 4
0 5 pavlov 210000 2022-03-16 0
1 2 johndoe 210000 2022-03-14 0
2 3 maruko 200000 2022-03-14 1
3 1 tom 100000 2022-03-13 1
4 4 ronaldo 100000 2022-03-15 0
0 1 2 3 4
0 5 pavlov 210000 2022-03-16 0
1 2 johndoe 210000 2022-03-14 0
2 3 maruko 200000 2022-03-14 1
3 1 tom 100000 2022-03-13 1
4 4 ronaldo 100000 2022-03-15 0
5 6 mohammed 300000 2022-03-17 1